Transformer² : Self-adaptive LLMs

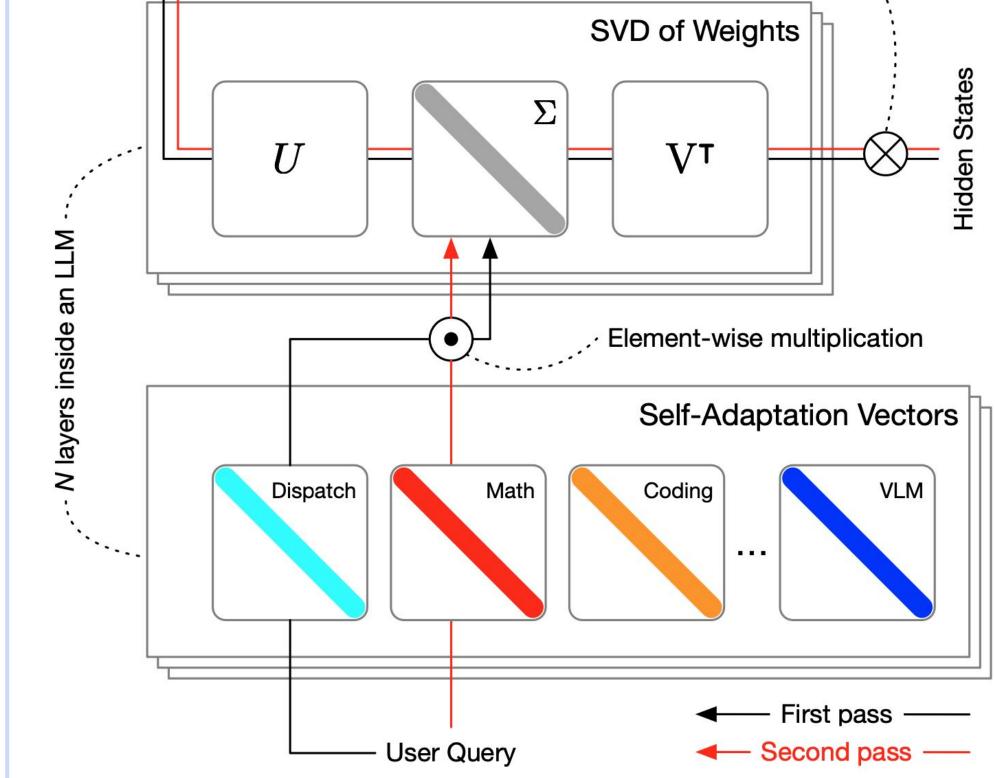
Qi Sun*, Edoardo Cetin*, Yujin Tang* {qisun, edo, yujintang}@sakana.ai *Equal contribution

Fine Tuning and Adaptive LLMs

- Self-adaptive LLMs would let models adjust to tasks in real-time.
- Traditional training tries to optimize for all tasks at once but is inefficient.
- Expert modules could help but face issues with large number parameters, overfitting, and composition.

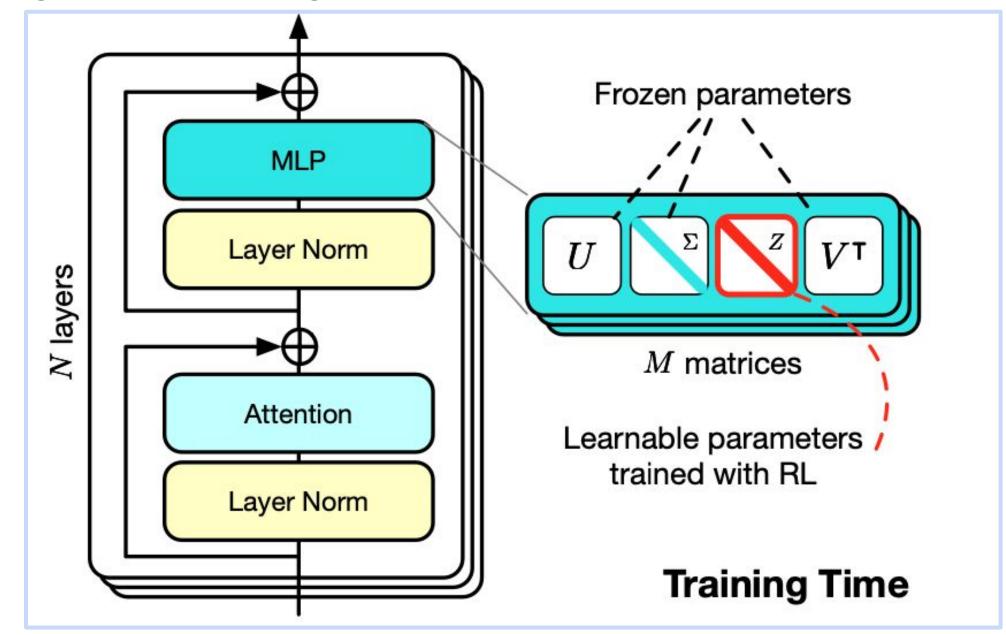
Transformer²

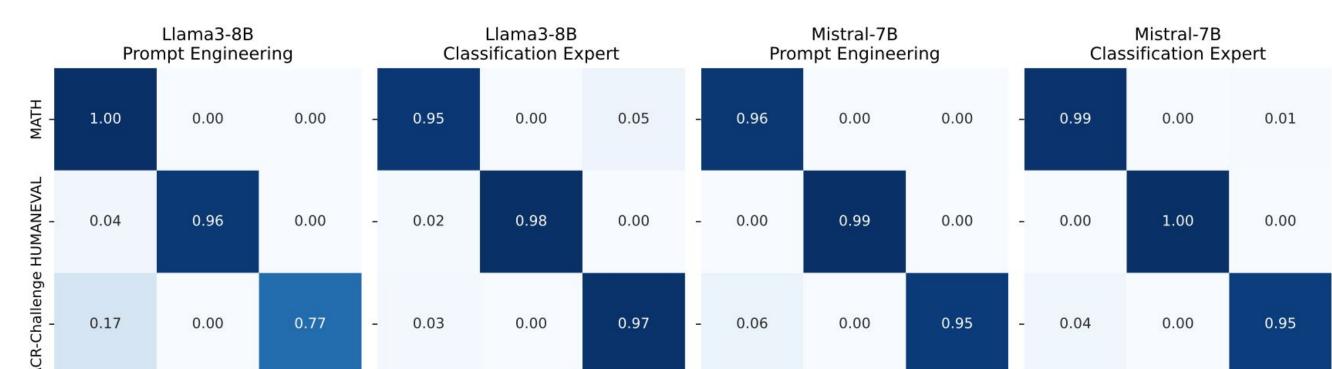
A self-adaptation framework that adapts LLMs for unseen tasks in real-time.


Result 1 - Seen Tasks

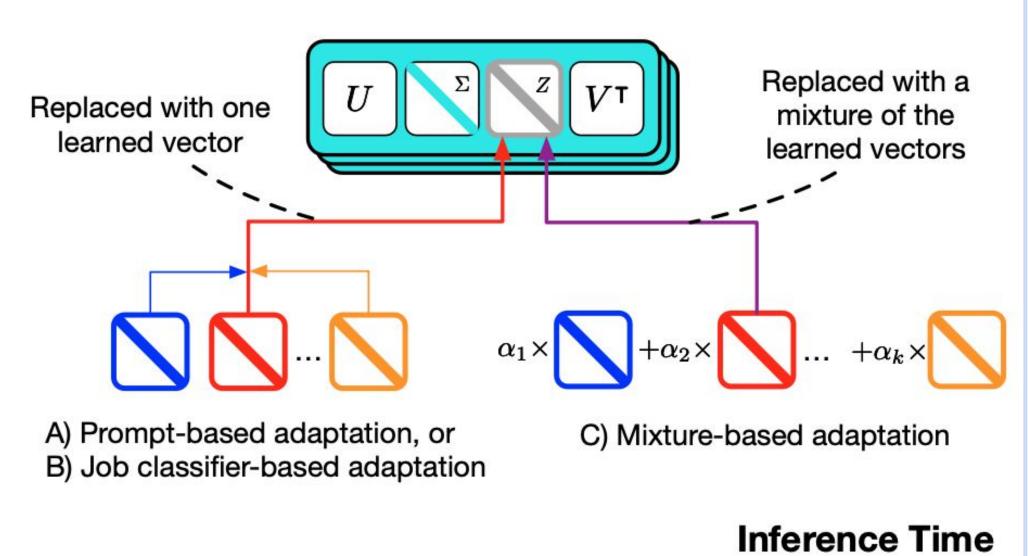
GSM8K	MBPP-Pro	ARC-Easy		Llama3-8B
75.89 (1.00) 77.18 (1.02) 79.15 (1.04)	64.65 (1.00) 67.68 (1.05) 66.67 (1.03)	88.59 (1.00) 88.97 (1.00) 89.56 (1.01)	50 -	LoRA SVF/Transfe
42.83 (1.00) 44.66 (1.04) 49.74 (1.16)	49.50 (1.00) 51.52 (1.04) 51.52 (1.04)	81.65 (1.00) 81.19 (0.98) 85.14 (1.04)	40 -	
85.29 (1.00) 77.26 (0.91) 88.32 (1.04)	80.81 (1.00) 68.69 (0.85) 80.81 (1.00)	89.10 (1.00) 88.55 (0.99) 88.47 (0.99)	35 -	
	75.89 (1.00) 77.18 (1.02) 79.15 (1.04) 42.83 (1.00) 44.66 (1.04) 49.74 (1.16) 85.29 (1.00) 77.26 (0.91)	75.89 (1.00) $64.65 (1.00)$ $77.18 (1.02)$ $67.68 (1.05)$ $79.15 (1.04)$ $66.67 (1.03)$ $42.83 (1.00)$ $49.50 (1.00)$ $44.66 (1.04)$ $51.52 (1.04)$ $49.74 (1.16)$ $51.52 (1.04)$ $85.29 (1.00)$ $80.81 (1.00)$ $77.26 (0.91)$ $68.69 (0.85)$	75.89 (1.00) 64.65 (1.00) 88.59 (1.00) 77.18 (1.02) 67.68 (1.05) 88.97 (1.00) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01) 42.83 (1.00) 49.50 (1.00) 81.65 (1.00) 44.66 (1.04) 51.52 (1.04) 81.19 (0.98) 49.74 (1.16) 51.52 (1.04) 85.14 (1.04) 85.29 (1.00) 80.81 (1.00) 89.10 (1.00) 77.26 (0.91) 68.69 (0.85) 88.55 (0.99)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

R




• Singular Value Finetuning

In training, we tune the scales of the singular values of the weight matrices to generate a set of "expert" vectors.


Method	MATH	Humaneval	ARC-Challenge
LLAMA3-8B-INSTRUCT 3	24.54 (1.00)	60.98 (1.00)	80.63 (1.00)
+ LoRA	24.12 (0.98)	52.44 (<mark>0.86</mark>)	81.06 (1.01)
+ Transformer ² (Prompt)	25.22 (1.03)	61.59 (1.01)	81.74 (1.01)
+ Transformer ² (Cls-expert)	25.18 (1.03)	62.80 (1.03)	81.37 (1.01)
+ Transformer ² (Few-shot)	25.47 (1.04)	62.99 (1.03)	82.61 (1.02)
MISTRAL-7B-INSTRUCT-V0.3	13.02 (1.00)	43.29 (1.00)	71.76 (1.00)
+ LoRA	13.16 (1.01)	37.80 (<mark>0.87</mark>)	75.77 (1.06)
+ Transformer ² (Prompt)	11.86 (<mark>0.91</mark>)	43.90 (1.01)	72.35 (1.01)
+ Transformer ² (Cls-expert)	11.60 (<mark>0.89</mark>)	43.90 (1.01)	74.83 (1.04)
+ Transformer ² (Few-shot)	13.39 (1.03)	47.40 (1.09)	75.47 (1.05)
LLAMA3-70B-INSTRUCT	40.64 (1.00)	78.66 (1.00)	87.63 (1.00)
+ LoRA	25.40 (<mark>0.62</mark>)	73.78 (<mark>0.94</mark>)	83.70 (<mark>0.96</mark>)
+ Transformer ² (Prompt)	40.44 (1.00)	79.88 (1.02)	88.48 (1.01)

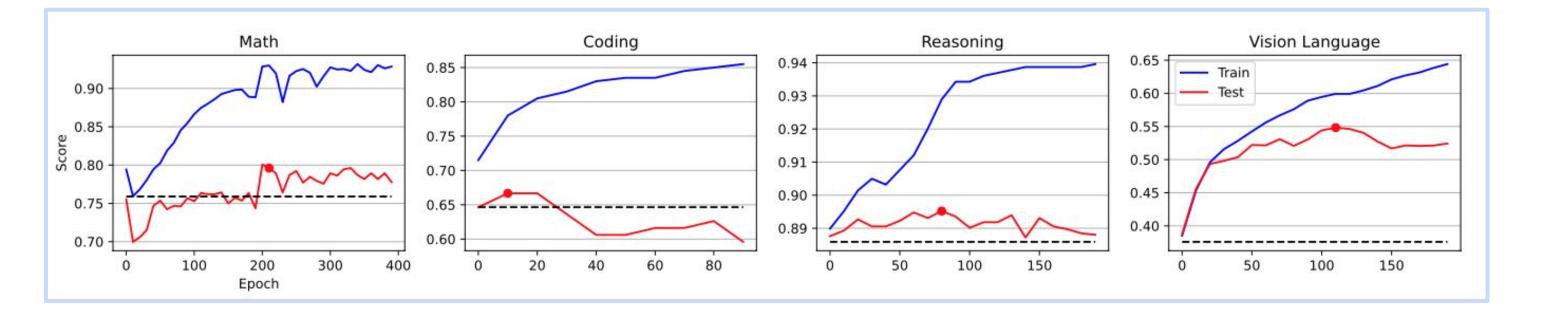
Analysis 1 - Job dispatching accuracy


• Adaptive Inference

In inference, a **two-pass** process is adopted where the first applies the task- specific expert and the second generates the answer.

Analysis 2 - Adaptation contribution

Analysis 3 - Cross-model compatibility


Method	MATH	Humaneval	ARC-Challenge
SVF training task	GSM8K	MBPP-pro	ARC-Easy
MISTRAL-7B-INSTRUCT-V0.3	13.02 (1.00)	43.29 (1.00)	71.76 (1.00)

Training Experts Vectors

Expert vectors are trained through reinforcement learning, using **KL-divergence** as a regularization technique.

- Reduces dependency on specific training datasets
- Allows direct task-specific feedback to improve model performance

$$J(\theta_z) = \mathbb{E}\left[\log\left(\pi_{\theta_{W'}}(\hat{y}_i \mid x_i)\right) r(\hat{y}_i, y_i)\right] - \lambda D_{\mathrm{KL}}(\pi_{\theta_{W'}} \| \pi_{\theta_W})$$

+ Llama SVF (ordered σ_i)	11.96 (<mark>0.92</mark>)	45.12 (1.04)	72.01 (1.00)
+ Llama SVF (shuffled σ_i)	10.52 (<mark>0.81</mark>)	40.24 (<mark>0.93</mark>)	70.82 (<mark>0.99</mark>)
+ Few-shot adaptation (cross-model)	12.65 (<mark>0.97</mark>)	46.75 (1.08)	75.64 (1.05)

Future Direction

- Explore model merging techniques to overcome the limitations of SVD experts' dependency on base models.
- Investigate ways to reduce computational costs when scaling to multiple specialized domains.
- Leverage advanced techniques to develop more powerful adaptation strategy.